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Abstract. We illustrate the interesting results of particle penetration through multiple 
potential barriers with the use of rectangular barriers. We show that complete trans- 
mission is possible through any number of barriers even at energies well below the barrier 
top. The tedious algebra is much simplified through the use of Pauli matrices. 

1. Introduction 

The study of particle penetration through single potential barriers is a standard 
exercise in introductory quantum mechanics courses (Merzbacher 1970). For energies 
well below the barrier top there is a finite, though very small, penetration probability 
which increases monotonically as the energy is increased to the value equal to the top 
of the barrier, there onwards it oscillates with decreasing amplitude and asymptotic- 
ally reaches unity. With the recent discovery of double-humped (and triple-humped) 
barriers in nuclear fission studies (Gai et a1 1969, Crammer and Nix 1970, Brack et a1 
1972) understanding of penetration through multiple barriers has become important. 
The results obtained with realistic potentials are very surprising at first sight (Bhandari 
1976). Below the barrier top, the transmission probability ( T )  is not a monotonically 
increasing function of energy, but shows some resonance-like peaks which could, in 
some cases, be as high as T = 1. 

In this paper we illustrate this phenomenon of complete transmission through 
multiple barriers with the help of rectangular barriers. We follow very closely the 
notations of Merzbacher (1970). 

2. Mathematical details 

Consider a potential barrier of height V and width 2a centred at the origin (figure 
l(a)). The wavefunction to the left of the barrier is given by 

$ ( x )  = A eikx + B ,  e-ikx for x <-a,  (1) 

and to the right of the barrier by: 

+ ( x )  = A2 eikx + B2 e-ikx for x >a ,  (2) 
where k 2  = 2mE/A2. From now on we use units such that 2m/A2 = 1. Also we define 4 
through q2  = V - E .  Then we obtain the following relation between the coefficients 
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20 - 26 ‘ ’ 26’ ‘ 
Figure 1. (a) A single rectangular potential barrier; ( 6 )  two equal barriers separated by a 
well of width 26; (c) three equal barriers separated by two asymmetric wells. 

A1, B1 and Az, Bz: 

where 

M11= M &  = (cosh 2qa +tie sinh 2qa) eZika 

M12 = MZl = $7 sinh 2qa 

det(M) = 1. 

Here 

(4) 

Noting that BZ=O for a beam incident from the left, we get the transmission 
coefficient for E < V as 

T = IMI1/-’ = (1 +$q2 sinh2 2qaI-l. (6 )  
Above the top of the barrier (E> V) we have 

T = (1 + $et2 sin’ 2q’a )-’ 

with 
(7) 

Now we shall consider the case of two identical barriers separated by a well of 
width 2b (figure l(b)). Let us introduce new coordinates with origin 0’ at the centre 
of the second barrier. Then, for the penetration through the second barrier equations 
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(3>-(5) are valid if the wavefunctions are written in the new coordinate system. That 
is: 

$ ( x ' ) = A ;  eikx'+Bh e-ikx' for a < x < a + 2 b  

I L ( ~ ' ) = A ;  eikx'+B; e-ikx' 
(9) 

for x > 3a +2b.  

Then we have 

with M given by equation (4). The relation between A2, B2 and A;, B ;  of equations 
( 2 )  and (9) can be seen to be 

where 
e-2ik(a+ b )  

N = (  0 

Now we can write the final relation between the incident and transmitted ampli- 
tudes through 

With suitable notation, this result can be extended to any number of barriers 

A' (G) = M N M N M . .  . 

Hence the problem of multiple barriers needs only the efficient handling of the 
transfer matrices M and N. It is convenient to define a new matrix 

(14) S = N112MN1/2 

with 
S11= S,*, = (cosh 2qa + $ E  sinh 2qa) e-Zikb 

S 1 2  = S& = $iq sinh 2qa 
(15) 

so that equation (13) becomes 

Now, we write S as a linear combination of the unit matrix and the three Pauli 
matrices 

s = S O I  + s1u1+ s2u2 + s3u3 

so = cosh 2qa cos 2kb + $ E  sinh 2qa sin 2kb 

s1=0 

s2 = -$q sinh 2qa 

s3 = -i(cosh 2qa sin 2kb - $ E  sinh 2qa cos 2kb)  
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and 
2 2  s ; = l + S ' + s J .  

Then we have 

s" =P+Q(SZ(TZ+S3(T3) 

where 

P=sI;+"C2sI;-2(S:+S:)+nCqSgn-4(S:+S:)2+ . . . 
(20)  

Q = "clsI;-' +"c~sI;-~(s ;  +s:)+"c~sI;-'(s: +si)' + . . . . 
Similarly we can expand N-"' = c o l  + ~ 3 ~ 3 .  However, since we are interested 

only in the transmission coefficient and not in the phases of the incident and trans- 
mitted beams we can write 

T = I(S")lll-2 = (P2 - Q's:)-' 

which, on using condition (18) and noting that P2 = 1 +@(si  - l) ,  reduces to 

T = (1 + Q's:)-'. (21)  

3. Symmetric double and triple barriers 

Now, we study the double and triple barriers in detail. For the double barrier the 
transmission coefficient is given by 

T = (1 +4sgs:)-', (22)  

where s2 is a monotonically increasing function of k (for E < V), but so is an 
oscillating function. Total transmission (T = 1) is obtained when so = 0, i.e., 

cot 2kb = - $ E  tanh 2qa. (23)  

This equation is to be solved graphically or numerically. It can be seen that for E well 
below the barrier top V, q is large and we have 2kb = n r ,  which shows that the 
transmission resonances are located at energies corresponding to the bound states in 
the potential well between the barriers. A plot of In T against k is shown in figure 2 
for a typical choice of V = 40 and 2a = 2b = 1. Above the barrier top also there are 
unit peaks in T coming for such values of the energies for which either so or s2 
(= -&'sin2q'u) vanishes. In order to ektimate the width of the transmission 
resonances, we write equation (21) as 

T = [ 1 + (a' - 1)4a2 COS' PI-' (24)  
with 

a' = 1 + a ~ '  sinh2 2qa 

p = tan-'(& tanh 2qa)-  2kb. 

T = 1 if P = ( n  +;)r. Since a is a smoothly varying function, it can be shown that 
for low lying resonances the halfwidth is given by 

Ak = (4ba2)-' .  (26)  
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Figure 2. Ln T against k for V = 40, 2a = 26 = 1. The full curve is for double barrier and 
the broken curve for single barrier. The arrow indicates the points at which E = V. 

The estimated widths for the two resonances of figure 2 are of the order of 1.2 X lo-' 
and 5 . 3  x respectively. 

In the case of symmetric triple barriers we have 

T = [l + S : ( ~ S ;  - 1)2]-'. 

Again, as before, the unit transmission peaks occur if, 

(28) 1 so = f~ or cos p = f 1/(2a). 

Thus we have some closely spaced pairs of unit peaks of very small width. Again, 
in analogy with the double barriers, we could associate them with the bound states of a 
double potential well. A plot of T for the triple barrier is shown in figure 3 (along with 
the cube of transmission probability for a single barrier, for comparison). The separa- 
tion between the peaks is given by 

Sk = (4ba)-'. (29) 

For the first and second doublers in figure 3 the separation is 3 X 

respectively. The halfwidth of the peaks is obtained as 
and 1.8 X 

i lk  = (8ba2)-'. (30) 

The double peaks are so narrow and close that they cannot be seen separately in the 
figure; so a magnified picture of the second resonance is shown as an inset. 

Above the barrier top the curve shows more double peaks and, in addition, there is 
another class of unit peaks coming from the condition s2 = 0. The superposition of 
closely lying three unit peaks makes the curve look as if it has a broad plateau. (In 
figure 3, the superposing peaks are at k = 7.06, 7.12, 7.43 and later at 10.5, 11.34, 
11.5 and so on.) It may be noted that, in the case of symmetric barriers, all the peaks 
have unit magnitude. For E C V, we have peaks at k = 2.371, 2.374, 4.628 and 
4.6465. 
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Figure 3. Full curve, In T against k for symmetric triple barrier; broken curve, III(T)~ 
against k for single barrier. The inset is an enlarged picture of the second doublet. The 
arrows to the left indicate the minima between the double peaks. The arrows pointing 
down show shallow peaks between broad maxima. 

Generalisation of these results to any number of barriers is straightforward. For n 
barriers we expect resonances each consisting of ( n  - 1) very closely spaced unit peaks 
(for E C V )  and flattening out above the barrier. 

4. Triple barrier with asymmetric wells 

The problem of penetration of particles through a triple barrier with two asymmetric 
wells (figure l(c)) can be handled in a similar manner. We obtain 

T-' = A + B sin 26 + C sin' S, (31) 
where 

A =  1 + ( ~ ~ ~ - 1 ) ( 4 a ~ ~ 0 ~ ~ / 3 - 1 ) ~  

B = -2a2  sin 2p(a2-  1)(4a2 cos2 p - 1) 

C = - 8 ~ 2 ~ ~ ~ Z ~ ( ~ 2 - 1 ) ( 4 ~ 2 ~ ~ ~ Z ~ - 2 a 2 - 1 )  

S = 2k(b'-  6 ) .  

One obtains peaks at energies corresponding to the bound states of either of the wells. 
No doublets are observed and the peaks are .not of unit magnitude (except when they 
correspond to bound states in both the wells-this can happen when k corresponds to 
a bound state in one of the wells and b' satisfies the condition 6 = i n r ) .  
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Figure 4 shows a plot of T against k for the case V = 40,2a  = 2b = 1 and 2b' = 0.8. 
The peaks at k = 2.3725 and 4.637 correspond to bound states in the first well and 
those at k = 2,7864 and 5.3415 correspond to the bound states in the second well. 
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Figure 4. Ln T against k for the asymmetric case. V = 40, 2a = 26 = 1; 26'= 0.8. 

Acknowledgment 

The authors wish to thank Dr S C K Nair for many helpful discussions. 

References 

Bhandari B S 1976 Nuci. Phys. A 256 271 
Brack M, Damgaard J, Jensen A S ,  Pauli H C, Strutinsky V M and Wong C Y 1972 Rev. Mod. Phys. 44 

Crammer J D and Nix J R 1970 Phys. Reu. C 2 1048 
Gai E V, Egnatuk A V, Rabotnov N S and Smirenkin G N 1969 h o c .  2nd Symp. on the Physics and 

Merzbacher E 1970 Quantum Mechanics 2nd edn (New York: Wiley) pp 93-100 

320-405 

Chemistry of Fission 1969 (Vienna: International Atomic Energy Agency) pp 3 3 7 4 7  


